Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26
1.
BMC Med Genomics ; 17(1): 105, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664735

BACKGROUND: Research on the fatty acid metabolism related gene SLC27A2 is currently mainly focused on solid tumors, and its mechanism of action in hematological tumors has not been reported. METHOD: This study aims to explore the pathological and immune mechanisms of the fatty acid metabolism related gene SLC27A2 in hematological tumors and verify its functional role in hematological tumors through cell experiments to improve treatment decisions and clinical outcomes of hematological tumors. RESULT: This study identified the fatty acid metabolism related gene SLC27A2 as a common differentially expressed gene between DLBCL and AML. Immune microenvironment analysis showed that SLC27A2 was significantly positively correlated with T cell CD4 + , T cell CD8 + , endothelial cells, macrophages, and NK cells in DLBCL. In AML, there is a significant negative correlation between SLC27A2 and B cells, T cell CD8 + , and macrophages. SLC27A2 participates in the immune process of hematological tumors through T cell CD8 + and macrophages. The GESA results indicate that high expression of SLC27A2 is mainly involved in the fatty acid pathway, immune pathway, and cell cycle pathway of DLBCL. The low expression of SLC27A2 is mainly involved in the immune pathway of AML. Therefore, SLC27A2 is mainly involved in the pathological mechanisms of hematological tumors through immune pathways, and cell experiments have also confirmed that SLC27A2 is involved in the regulation of DLBCL cells. CONCLUSION: In summary, our research results comprehensively report for the first time the mechanism of action of SLC27A2 in the immune microenvironment of DLBCL and AML, and for the first time verify the cycle and apoptotic effects of the fatty acid related gene SLC27A2 in DLBCL cells through cell experiments. Research can help improve the treatment of AML and DLBCL patients.


Cell Cycle , Lymphoma, Large B-Cell, Diffuse , Tumor Microenvironment , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/pathology , Tumor Microenvironment/immunology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Hematologic Neoplasms/genetics , Hematologic Neoplasms/immunology , Hematologic Neoplasms/pathology , Cell Line, Tumor , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Fatty Acids/metabolism
2.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38612602

Molecular property prediction is an important task in drug discovery, and with help of self-supervised learning methods, the performance of molecular property prediction could be improved by utilizing large-scale unlabeled dataset. In this paper, we propose a triple generative self-supervised learning method for molecular property prediction, called TGSS. Three encoders including a bi-directional long short-term memory recurrent neural network (BiLSTM), a Transformer, and a graph attention network (GAT) are used in pre-training the model using molecular sequence and graph structure data to extract molecular features. The variational auto encoder (VAE) is used for reconstructing features from the three models. In the downstream task, in order to balance the information between different molecular features, a feature fusion module is added to assign different weights to each feature. In addition, to improve the interpretability of the model, atomic similarity heat maps were introduced to demonstrate the effectiveness and rationality of molecular feature extraction. We demonstrate the accuracy of the proposed method on chemical and biological benchmark datasets by comparative experiments.


Benchmarking , Drug Discovery , Animals , Electric Power Supplies , Estrus , Supervised Machine Learning
3.
Heliyon ; 10(5): e26276, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38439856

Background: Patients with leukemia rely on social and family support. This study aimed to explore the knowledge, attitude, and practice (KAP) toward leukemia among family members of patients with leukemia and the general population in southeast China. Methods: A cross-sectional study was conducted in September 2022 in southeast China (Anhui Province). The KAP scores and demographic data were assessed by questionnaire and analyzed by multivariable logistic regression and structural equation modeling. Results: A total of 760 valid questionnaires were collected, including 117 (15.39%) answered by family members of patients with leukemia. The mean knowledge (8.30 ± 2.79 vs. 8.72 ± 2.56, P = 0.103), attitude (52.17 ± 5.52 vs. 52.27 ± 5.53, P = 0.862), and practice (8.06 ± 2.00 vs. 8.18 ± 2.05, P = 0.547) scores were comparable among family members and the general population. Higher knowledge scores [OR = 1.18 (1.10, 1.27), P < 0.001] and higher attitude scores [OR = 1.05 (1.02, 1.09), P = 0.002] were independently associated with better practice scores. Being a family member of a patient with leukemia had no significant effect on the KAP scores. Conclusion: The participants demonstrated satisfactory knowledge, positive attitude, and appropriate practices toward leukemia, suggesting that access to information about leukemia to the general public might be sufficient in China. Health education might effectively improve knowledge, which could translate into improved attitude and practice.

4.
BMC Genomics ; 24(1): 557, 2023 Sep 20.
Article En | MEDLINE | ID: mdl-37730555

BACKGROUND: Drug-target binding affinity (DTA) prediction is important for the rapid development of drug discovery. Compared to traditional methods, deep learning methods provide a new way for DTA prediction to achieve good performance without much knowledge of the biochemical background. However, there are still room for improvement in DTA prediction: (1) only focusing on the information of the atom leads to an incomplete representation of the molecular graph; (2) the self-supervised learning method could be introduced for protein representation. RESULTS: In this paper, a DTA prediction model using the deep learning method is proposed, which uses an undirected-CMPNN for molecular embedding and combines CPCProt and MLM models for protein embedding. An attention mechanism is introduced to discover the important part of the protein sequence. The proposed method is evaluated on the datasets Ki and Davis, and the model outperformed other deep learning methods. CONCLUSIONS: The proposed model improves the performance of the DTA prediction, which provides a novel strategy for deep learning-based virtual screening methods.


Drug Discovery , Neural Networks, Computer , Amino Acid Sequence , Supervised Machine Learning
5.
BMC Bioinformatics ; 24(1): 334, 2023 Sep 07.
Article En | MEDLINE | ID: mdl-37679724

BACKGROUND: Drug-target affinity (DTA) prediction is a critical step in the field of drug discovery. In recent years, deep learning-based methods have emerged for DTA prediction. In order to solve the problem of fusion of substructure information of drug molecular graphs and utilize multi-scale information of protein, a self-supervised pre-training model based on substructure extraction and multi-scale features is proposed in this paper. RESULTS: For drug molecules, the model obtains substructure information through the method of probability matrix, and the contrastive learning method is implemented on the graph-level representation and subgraph-level representation to pre-train the graph encoder for downstream tasks. For targets, a BiLSTM method that integrates multi-scale features is used to capture long-distance relationships in the amino acid sequence. The experimental results showed that our model achieved better performance for DTA prediction. CONCLUSIONS: The proposed model improves the performance of the DTA prediction, which provides a novel strategy based on substructure extraction and multi-scale features.


Drug Discovery , Amino Acid Sequence , Probability
6.
Heliyon ; 9(8): e19112, 2023 Aug.
Article En | MEDLINE | ID: mdl-37636435

Hyaluronic acid (HA) is a crucial component of the extracellular matrix, and its level of accumulation is related to the progression of various malignant tumors. In this study, a pan-cancer analysis of the three enzymes called hyaluronan synthases (HAS1, HAS2, and HAS3) that produce HA was performed. The study comprehensively describes the characteristics of HAS1, HAS2, and HAS3 in cancers using public databases and tools, to identify the potential biological pathways involved at the molecular, protein, cellular, and clinical sample levels. The analysis showed that dysregulation of the three genes often occurs in cancer, contributing to cancer progression, metastasis, and prognosis. Overexpression of HAS2 promotes secretion of HA in GBM and enhances cell proliferation and migration. The common and specific functions of HAS in certain diseases have important research implications for the treatment and prognosis of tumors.

7.
Curr Gene Ther ; 23(5): 410-418, 2023.
Article En | MEDLINE | ID: mdl-37491851

BACKGROUND: DNA hypermethylation plays a critical role in the occurrence and progression of acute myeloid leukemia (AML). The mitochondrial serine transporter, SFXN3, is vital for onecarbon metabolism and DNA methylation. However, the impact of SFXN3 on the occurrence and progression of AML has not been reported yet. OBJECTIVE: In this study, we hypothesized that SFXN3 indicates a poor prognosis and suggested tailored treatment for AML patients. METHODS: We used GEPIA and TCGA repository data to analyze the expression of SFXN3 and its correlation with survival in AML patients. RT-qPCR was used to detect the SFXN3 level in our enrolled AML patients and volunteers. Additionally, Whole Genome Bisulfite Sequencing (WGBS) was used to detect the genomic methylation level in individuals. RESULTS: Through the TCGA and GEPIA databases, we found that SFXN3 was enriched in AML patients, predicting shorter survival. Furthermore, we confirmed that SFXN3 was primarily overexpressed in AML patients, especially non-M3 patients, and that high SFXN3 in non-M3 AML patients was found to be associated with poor outcomes and frequent blast cells. Interestingly, non-M3 AML patients with high SFXN3 levels who received hypomethylating therapy showed a higher CR ratio. Finally, we found that SFXN3 could promote DNA methylation at transcription start sites (TSS) in non-M3 AML patients. These sites were found to be clustered in multiple vital cell functions and frequently accompanied by mutations in DNMT3A and NPM1. CONCLUSION: In conclusion, SXFN3 plays an important role in the progression and hypermethylation in non-M3 AML patients and could be a potential biomarker for indicating a high CR rate for hypomethylating therapy.


DNA Methylation , Leukemia, Myeloid, Acute , Humans , DNA Methylation/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mutation , Gene Expression Regulation, Leukemic , Prognosis
9.
Biomolecules ; 13(3)2023 03 09.
Article En | MEDLINE | ID: mdl-36979438

Molecular property prediction is an important direction in computer-aided drug design. In this paper, to fully explore the information from SMILE stings and graph data of molecules, we combined the SALSTM and GAT methods in order to mine the feature information of molecules from sequences and graphs. The embedding atoms are obtained through SALSTM, firstly using SMILES strings, and they are combined with graph node features and fed into the GAT to extract the global molecular representation. At the same time, data augmentation is added to enlarge the training dataset and improve the performance of the model. Finally, to enhance the interpretability of the model, the attention layers of both models are fused together to highlight the key atoms. Comparison with other graph-based and sequence-based methods, for multiple datasets, shows that our method can achieve high prediction accuracy with good generalizability.


Drug Design , Polymers
10.
J Clin Pharmacol ; 63(1): 91-104, 2023 01.
Article En | MEDLINE | ID: mdl-35943164

The susceptibility of different individuals to anesthetics varies widely, and sevoflurane is no exception. We hypothesized that polymorphisms in genes involved in pharmacokinetics and pharmacodynamics may explain this variation. A total of 151 individuals undergoing otorhinolaryngology surgery were included. The influence of genetic polymorphisms on sevoflurane sensitivity were investigated through SNaPshot technology. Individuals carrying KCNK2 rs6686529 G > C, MTRR rs3733784 TT, rs2307116 GG, or rs1801394 AA polymorphisms had a higher sensitivity to the sedative effect of sevoflurane than those without those polymorphisms. The univariate linear regression analysis indicated that MTRR rs3733784 TT, rs2307116 GG, and rs1801394 AA were potentially significant predictors of higher sensitivity to the sedative effect of sevoflurane. Moreover, CYP2E1 rs3813867 G > C and rs2031920 C > T, GABRG1 rs279858 T > C, KCNK3 rs1275988 CC, GRIN2B rs1806201 GG, MTRR rs2307116 G > A, and rs1801394 A > G were associated with a higher sensitivity to the cardiovascular effect of sevoflurane. Our results suggested that 9 single nucleotide polymorphisms in genes involved in metabolizing enzymes, transport proteins, target proteins of sevoflurane and folate metabolism may help to explain individual differences in the susceptibility to the sedative or cardiovascular effect of sevoflurane.


Cytochrome P-450 CYP2E1 , Hypnotics and Sedatives , Polymorphism, Single Nucleotide , Sevoflurane , Humans , Case-Control Studies , Cytochrome P-450 CYP2E1/metabolism , Genotype , Hypnotics and Sedatives/metabolism , Hypnotics and Sedatives/pharmacokinetics , Sevoflurane/metabolism , Sevoflurane/pharmacokinetics
11.
Transl Oncol ; 26: 101549, 2022 Dec.
Article En | MEDLINE | ID: mdl-36191461

Cancer stem cells (CSCs) in triple-negative breast cancer (TNBC) are closely related to tumorigenesis and metastasis. Thioridazine (THZ) is a usual phenothiazine antipsychotic drug that can destroy CSCs. We aimed to explore whether THZ could sensitize metastatic TNBC cells, especially the CSCs, to carboplatin (CBP) treatment. Metastatic TNBC cells, 4T1 cells, and tumor-bearing mice were treated with THZ and CBP as monotherapy or combination therapy. MTT, flow cytometry, electron microscopy, immunohistochemistry and western blotting were applied to assess the cell viability, apoptosis, mitochondrial morphology and the relevant protein levels, respectively. Tumor size and lung metastasis under different treatments as well as tumorigenesis of residual tumor cells from each group were monitored. THZ combined with CBP inhibited 4T1 tumor cell proliferation and induced apoptosis by inhibiting the PI3K-AKT-mTOR pathway and activating estrogen receptor stress. THZ also showed strong activity against breast CSCs, THZ combined with CBP significantly destroyed cancer cells, inhibited lung metastasis and relieved the tumor burden; Our data demonstrated that THZ can sensitize TNBC cells to CBP treatment and this combination therapy may provide a bright strategy for TNBC treatment by targeting both cancer cells and CSCs.

12.
Front Oncol ; 12: 879471, 2022.
Article En | MEDLINE | ID: mdl-35494006

Background: T-cell immunoglobulin and mucin domain-containing molecule 3 (TIM-3) expresses on leukemic stem and progenitor populations of non-M3 acute myeloid leukemia (AML) as well as T lymphocytes. TIM-3 is thought to be involved in the self-renewal of leukemic stem cells and the immune escape of AML cells, however its correlation with AML prognosis is still controversial and worthy of further investigation. Methods: we simultaneously assessed TIM-3 expression levels of leukemic blasts and T lymphocytes in the bone marrow of de novo AML patients using flow cytometry. The correlations of TIM-3 expression between leukemic blasts and T lymphocytes and the correlations of TIM-3 expression with various patient parameters were analyzed. In addition, the Cancer Genome Atlas (TCGA) data of AML patients were acquired and analyzed to verify the results. Results: TIM-3 expression of CD34+ leukemic blasts (R2 = 0.95, p<0.0001) and CD34+CD38- leukemic stem cells (R2 = 0.75, p<0.0001) were significantly and positively correlated with that of the whole population of leukemic blasts. In addition, TIM-3 expression level of leukemic blasts correlated significantly and positively with that of CD8+ (R2 = 0.44, p<0.0001) and CD4+ (R2 = 0.16, p=0.0181) lymphocytes, and higher TIM-3 expression of leukemic blasts was significantly associated with a greater proportion of peripheral CD8+ T lymphocytes (R2 = 0.24, p=0.0092), indicating that TIM-3 on leukemic blasts might alter adaptive immunity of AML patients. Regarding clinical data, the presence of core binding factor (CBF) translocations was significantly correlated with higher TIM-3 expression of leukemic blasts (CBF versus non-CBF, median 22.78% versus 1.28%, p=0.0012), while TIM-3 expression levels of leukemic blasts were not significantly associated with the remission status after induction chemotherapy (p=0.9799), overall survival (p=0.4201) or event-free survival (p=0.9873). Similar to our results, TCGA data showed that patients with CBF translocations had significantly higher mRNA expression level of HAVCR2 (the gene encoding TIM-3) (median, 9.81 versus 8.69, p<0.0001), and as all patients in the cohort were divided into two groups based on the median HAVCR2 expression level, 5-year overall survivals were not significantly different (low versus high, 24.95% versus 24.54%, p=0.6660). Conclusion: TIM-3 expression level on AML blasts correlates with presence of CBF translocations rather than clinical outcomes.

13.
Mini Rev Med Chem ; 22(22): 2808-2812, 2022.
Article En | MEDLINE | ID: mdl-35593342

Diffuse Large B-cell Lymphoma (DLBCL), an aggressive cancer of the B cells, is the most common pathological type of Non-hodgkin's Lymphoma (NHL), and the typical heterogeneity of the disease is due to metastasis, which indicates a poor prognosis. Currently, the key mechanism of metastasis remains largely unknown, and research focus on the same in DLBCL. Recent studies have focused on the role of Mesenchymal-epithelial Transition (MET) and Epithelial- mesenchymal Transition (EMT), the Extracellular Matrix (ECM), chemokines, cancer stem cells, and non-coding RNAs in DLBCL. Here, we have summarised the advances and challenges in the investigation of metastasis in DLBCL and attempted to reveal the potential targets that can improve patient survival.


Lymphoma, Large B-Cell, Diffuse , Lymphoma, Non-Hodgkin , Humans , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Non-Hodgkin/pathology , Epithelial-Mesenchymal Transition
14.
Front Med (Lausanne) ; 8: 678185, 2021.
Article En | MEDLINE | ID: mdl-34917626

Background: Volatile anesthetic-induced agitation, also called paradoxical excitation, is not uncommon during anesthesia induction. Clinically, patients with agitation may lead to self-injury or disrupt the operative position, increasing the incidence of perioperative adverse events. The study was designed to investigate clinical features of sevoflurane-induced agitation and examined whether any gene polymorphisms can potentially be used to predict agitation. Methods: One hundred seventy-six patients underwent anesthesia induction with sevoflurane were included in this study. Frontal electroencephalogram (EEG), electromyography (EMG), and hemodynamics were recorded continuously during anesthesia induction. DNA samples were genotyped using the Illumina Infinium Asian Screening Array and the SNaPshot technology. Genetic association was analyzed by genome-wide association study. Logistic regression analysis was used to determine the role of variables in the prediction of agitation. Results: Twenty-five (14.2%) patients experienced agitation. The depth of anesthesia index (Ai index) (p < 0.001), EMG (p < 0.001), heart rate (HR) (p < 0.001), and mean arterial pressure (MAP) (p < 0.001) rapidly increased during the agitation. EEG exhibited a shift toward high frequencies with spikes during agitation. The fast waves (alpha and beta) were more pronounced and the slow rhythms (delta) were less prominent during the occurrence of agitation. Moreover, three SNPs in the methionine synthase reductase (MTRR) gene were correlated to the susceptibility to agitation (p < 5.0 × 10-6). Carrying rs1801394 A > G (odds ratio 3.50, 95% CI 1.43-9.45) and/or rs2307116 G > A (3.31, 1.36-8.95) predicted a higher risk of agitation. Discussion: This study suggests that the agitation/paradoxical excitation induced by sevoflurane is characterized as increases in Ai index, EMG, HR and MAP, and the high frequency with spikes in EEG. Moreover, our results provide preliminary evidence for MTRR genetic polymorphisms, involving folate metabolism function, may be related to the susceptibility to agitation. Clinical Trial Number and Registry URL: ChiCTR1900026218; http://www.chictr.org.cn/showproj.aspx?proj=40655.

15.
Cancer Cell Int ; 21(1): 337, 2021 Jul 03.
Article En | MEDLINE | ID: mdl-34217295

BACKGROUND: Additional epidermal growth factor receptor (EGFR) mutations confer the drug resistance to generations of EGFR targeted tyrosine kinase inhibitor (EGFR-TKI), posing a major challenge to developing effective treatment of lung adenocarcinoma (LUAD). The strategy of combining EGFR-TKI with other synergistic or sensitizing therapeutic agents are considered a promising approach in the era of precision medicine. Moreover, the role and mechanism of SHP2, which is involved in cell proliferation, cytokine production, stemness maintenance and drug resistance, has not been carefully explored in lung adenocarcinoma (LUAD). METHODS: To evaluate the impact of SHP2 on the efficacy of EGFR T790M mutant LUAD cells to Osimertinib, SHP2 inhibition was tested in Osimertinib treated LUAD cells. Cell proliferation and stemness were tested in SHP2 modified LUAD cells. RNA sequencing was performed to explore the mechanism of SHP2 promoted stemness. RESULTS: This study demonstrated that high SHP2 expression level correlates with poor outcome of LUAD patients, and SHP2 expression is enriched in Osimertinib resistant LUAD cells. SHP2 inhibition suppressed the cell proliferation and damaged the stemness of EGFR T790M mutant LUAD. SHP2 facilitates the secretion of CXCL8 cytokine from the EGFR T790M mutant LUAD cells, through a CXCL8-CXCR1/2 positive feedback loop that promotes stemness and tumorigenesis. Our results further show that SHP2 mediates CXCL8-CXCR1/2 feedback loop through ERK-AKT-NFκB and GSK3ß-ß-Catenin signaling in EGFR T790M mutant LUAD cells. CONCLUSIONS: Our data revealed that SHP2 inhibition enhances the anti-cancer effect of Osimertinib in EGFR T790M mutant LUAD by blocking CXCL8-CXCR1/2 loop mediated stemness, which may help provide an alternative therapeutic option to enhance the clinical efficacy of osimertinib in EGFR T790M mutant LUAD patients.

16.
Cell Chem Biol ; 28(5): 610-624.e5, 2021 05 20.
Article En | MEDLINE | ID: mdl-33711257

We previously tested HER2-targeted antibody-drug conjugates (ADCs) in immunocompromised (SCID) mice, precluding evaluation of host immunity, impact on cancer stem cells (CSCs), and potential benefit when combined with PD-L1 blockade. In this study, we tested HER2-targeted ADC in two immunocompetent mouse tumor models. HER2-targeted ADC specifically inhibited the growth of HER2-expressing tumors, prolonged animal survival, and reduced HER2+ and PD-L1+ cells. ADC + anti-PD-L1 antibody augmented therapeutic efficacy, modulated immune gene signatures, increased the number and function of CD3+ and CD19+ tumor-infiltrating lymphocytes (TILs), induced tumor antigen-specific immunological memory, stimulated B cell activation, differentiation, and IgG1 production both systemically and in the tumor microenvironment. In addition, ADC therapy modulated T cell subsets and their activation in TILs. Furthermore, HER2-targeted ADC reduced the number and tumorigenicity of ALDHhi CSCs. This study demonstrates that HER2-targeted ADC effectively targets ALDHhi CSCs and this effect is augmented by co-administration of anti-PD-L1 antibody.


Immunoconjugates/pharmacology , Neoplastic Stem Cells/drug effects , Receptor, ErbB-2/antagonists & inhibitors , Animals , Cell Line, Tumor , Female , Humans , Immunoconjugates/chemistry , Mice , Mice, Inbred BALB C , Neoplastic Stem Cells/immunology , Receptor, ErbB-2/immunology
17.
Mini Rev Med Chem ; 21(11): 1314-1321, 2021.
Article En | MEDLINE | ID: mdl-33245269

EGFR-TKIs are confronted with big challenge of everlasting activated EGFR mutations which lack effective binding sites; this barrier is the dark side that largely limits the outcome of NSCLC patients in the clinic. Combination strategies show impressive anti-tumor efficacy that compared with EGFR-TKI mono-treatment, especially targeting both stem cells and non-stem cells. SHP2 (Src homology 2-containing phosphotyrosine phosphatase 2) plays an important role in regulating various malignant biology through hyper-activating intracellular pathways due to either overexpression or catalytical mutation. Some pathways, in which SHP2 was involved, were overlapped with EGFR downstream, and others were not subject to EGFR. Interestingly, SHP2 suppression was reported to destroy the stemness of cancer. Therefore, we hypothesize that SHP2 inhibitor might be a promising drug that could synergistically enhance or sensitize the anti-tumor efficacy of EGFR-TKIs in EGFR mutated NSCLC patients. Here, we summarized the mechanisms of SHP2 in regulating EGFR mutated NSCLC patients, and attempted to reveal the potential synergistic file://localhost/C/:Program%20Files%20(x86):Youdao:Dict:7.5.2.0:resultui:dict:%3Fkeyword=effects of SHP2 inhibitor combined with EGFR-TKIs.


Carcinoma, Non-Small-Cell Lung/drug therapy , Enzyme Inhibitors/therapeutic use , ErbB Receptors/genetics , Lung Neoplasms/drug therapy , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Enzyme Inhibitors/chemistry , Humans , Mutation , Protein Kinase Inhibitors/therapeutic use , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Tumor Microenvironment
18.
Chin Med J (Engl) ; 133(2): 183-189, 2020 Jan 20.
Article En | MEDLINE | ID: mdl-31929368

BACKGROUND: Obstetric hemorrhage is a major cause of maternal death during cesarean delivery. The objective of this retrospective observational study was to evaluate the efficacy and safety of intra-operative cell salvage (IOCS) in cesarean section. METHODS: We included a total of 361 patients diagnosed with central placenta previa who underwent cesarean section from May 2016 to December 2018. In this study, 196 patients received autologous transfusion using IOCS (IOCS group) and 165 patients accepted allogeneic blood transfusion (ABT group). Propensity score matched analysis was performed to balance differences in the baseline variables between the IOCS group and ABT group. Patients in the IOCS group were matched 1:1 to patients in the ABT group. RESULTS: After propensity score matching, 137 pairs of cases between the two groups were successfully matched and no significant differences in baseline characteristics were found between the IOCS group and ABT group. Patients in the IOCS group were associated with significantly shorter length of hospital stay, compared with ABT group (8.9 ±â€Š4.1 days vs. 10.3 ±â€Š5.2 days, t = -2.506, P = 0.013). The postoperative length of hospital stay was 5.3 ±â€Š1.4 days for patients in the IOCS group and 6.6 ±â€Š3.6 days for those in the ABT group (t = -4.056, P < 0.001). The post-operative hemoglobin level in the IOCS group and ABT group was 101.3 ±â€Š15.4 and 96.3 ±â€Š16.6 g/L, respectively, which were significantly different (t = 2.615, P = 0.009). Allogeneic red blood cell transfusion was significantly lower at 0 unit (range: 0-11.5 units) in the IOCS group when compared with 2 units (range: 1-20 units) in the ABT group (P < 0.001). CONCLUSIONS: This retrospective observational study using propensity score matched analysis suggested that IOCS was associated with shorter length of postoperative hospital stay and higher post-operative hemoglobin levels during cesarean delivery.


Cesarean Section/statistics & numerical data , Adult , Blood Transfusion/methods , Female , Hemoglobins/metabolism , Humans , Length of Stay , Postoperative Period , Pregnancy , Propensity Score , Retrospective Studies
19.
Cancer Med ; 8(6): 2930-2941, 2019 06.
Article En | MEDLINE | ID: mdl-31050207

Richter syndrome (RS) indicates the transformation of chronic lymphocytic leukemia (CLL) into an aggressive lymphoma (mostly DLBCL). Richter syndrome is a rare complication with an aggressive clinical course, bearing an unfavorable prognosis. Currently, there is no effective treatment for it. As a novel cellular-based immune therapy, chimeric antigen receptor-modified T (CART) cells treatment is gradually used in treating hematological malignancies, especially in CD19+ B-cell malignancy. Therefore, CD19-directed chimeric antigen receptor-modified T cells (CART-19) treatment is promising to be used as a new method for RS patients. In our study, one RS patient expressing high level of CD19 molecule was enrolled in clinical trial; he has received a series of treatments but did not achieve a satisfactory therapeutic effect. The patient totally received 3.55 × 108 autologous CART-19 cells infusion. After CART-19 infusion, the mainly clinical side effect was repeated fever. The maximal duration period was 24 days and the highest temperature was 40.1°C. Pancytopenia and significantly serum cytokines level rise were observed, including IFN-γ, IL-6, and IL-10. Before discharge, the level of cytokines reduced to normal levels. In addition, we detected the serum biochemical indices as like K+ , Ca2+ , creatinine, and glutamic-pyruvic transaminase, all of these indices were normal. This showed that there was no tumor necrosis syndrome after treatment. The proportion of B cells in patient's peripheral blood decreased from 72% to 40.2% after infusion, co-occurring with reduction in lymph nodes and hematopoietic reconstitution. Based on the recent revolution in the therapeutic landscape for hematological malignancies including B-cell lymphomas, CART-CD19 cell therapy as a new therapeutic option for RS might be available in the coming years. It aims to reduce patient's tumor burden, prolong their survival time, and provide opportunities for other sequential therapy such as chemotherapy and bone marrow transplantation.


Antigens, CD19/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/metabolism , Humans , Male , Middle Aged , Prognosis , Syndrome , Transfection , Treatment Outcome
20.
Cancer Cell Int ; 19: 354, 2019.
Article En | MEDLINE | ID: mdl-31889906

BACKGROUND: miR-100 has been reported to closely associate with gastric cancer (GC) initiation and progression. However, the underlying mechanism of miR-100-3p in GC is still largely unclear. In this study, we intend to study how miR-100-3p regulates GC malignancy. METHODS: The expression levels of miR-100-3p in vitro (GES-1 and GC cell lines) and in vivo (cancerous and normal gastric tissues) were examined by quantitative real-time PCR (qRT-PCR). MTT and PE/Annexin V analyses were responsible for measurement of the effects of miR-100-3p on GC cell proliferation and apoptosis. Transwell assay with or without matrigel was used to examine the capacity of migration and invasion in GC cells. The interaction of miR-100-3p with bone morphogenetic protein receptor 2 (BMPR2) was confirmed through transcriptomics analysis and luciferase reporter assay. qRT-PCR and Western blot analyses were applied to determine the expression of ERK/AKT and Bax/Bcl2/Caspase3, which were responsible for the dysfunction of miR-100-3p. RESULTS: miR-100-3p was down-regulated in GC cell lines and cancerous tissues, and was negatively correlated with BMPR2. Loss of miR-100-3p promoted tumor growth and BMPR2 expression. Consistently, the effects of miR-100-3p inhibition on GC cells were partially neutralized by knockdown of BMPR2. Over-expression of miR-100-3p simultaneously inhibited tumor growth and down-regulated BMPR2 expression. Consistently, over-expression of BMPR2 partially neutralized the effects of miR-100-3p over-expression. Further study demonstrated that BMPR2 mediated the effects downstream of miR-100-3p, which might indirectly regulate ERK/AKT and Bax/Bcl2/Caspase3 signaling pathways. CONCLUSION: miR-100-3p acted as a tumor-suppressor miRNA that down-regulated BMPR2, which consequently inhibited the ERK/AKT signaling and activated Bax/Bcl2/Caspase3 signaling. This finding provided novel insights into GC and could contribute to identify a new diagnostic and therapeutic target.

...